Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Multichannel coupling in hybrid systems makes an attractive testbed not only because of the distinct advantages entailed by each constituent mode but also because the opportunity to leverage interference among the various excitation pathways. Here, via combined analytical calculation and experiment, we demonstrate that the phase of the magnetization precession at the interface of a coupled yttrium iron garnet (YIG)/permalloy (Py) bilayer is collectively controlled by the microwave photon field torque and the interlayer exchange torque, manifesting a coherent, dual-channel excitation scheme that effectively tunes the magneto-optical spectrum. The different torque contributions vary with frequency, external bias field, and type of interlayer coupling between YIG and Py, which further results in destructive or constructive interferences between the two excitation channels, and hence selective suppression or amplification of the hybridized magnon modes.more » « lessFree, publicly-accessible full text available September 1, 2026
- 
            Abstract A magnon and a phonon are the quanta of spin wave and lattice wave, respectively, and they can hybridize into a magnon polaron when their frequencies and wavenumbers match close enough the values at the exceptional point. Guided by an analytically calculated magnon polaron dispersion, dynamical phase-field simulations are performed to investigate the effects of magnon polaron formation on the attenuation of a bulk acoustic wave in a magnetic insulator film. It is shown that a stronger magnon–phonon coupling leads to a larger attenuation. The simulations also demonstrate the existence of a minimum magnon–phonon interaction time required for the magnon polaron formation, which is found to decrease with the magnetoelastic coupling coefficient but increase with the magnetic damping coefficient. These results deepen the understanding of the mechanisms of acoustic attenuation in magnetic crystals and provide insights into the design of new-concept spin interconnects that operate based on acoustically driven magnon propagation.more » « less
- 
            Abstract Current induced spin-orbit torque (SOT) holds great promise for next generation magnetic-memory technology. Field-free SOT switching of perpendicular magnetization requires the breaking of in-plane symmetry, which can be artificially introduced by external magnetic field, exchange coupling or device asymmetry. Recently it has been shown that the exploitation of inherent crystal symmetry offers a simple and potentially efficient route towards field-free switching. However, applying this approach to the benchmark SOT materials such as ferromagnets and heavy metals is challenging. Here, we present a strategy to break the in-plane symmetry of Pt/Co heterostructures by designing the orientation of Burgers vectors of dislocations. We show that the lattice of Pt/Co is tilted by about 1.2° when the Burgers vector has an out-of-plane component. Consequently, a tilted magnetic easy axis is induced and can be tuned from nearly in-plane to out-of-plane, enabling the field-free SOT switching of perpendicular magnetization components at room temperature with a relatively low current density (~1011 A/m2) and excellent stability (> 104cycles). This strategy is expected to be applicable to engineer a wide range of symmetry-related functionalities for future electronic and magnetic devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
